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Abstract. In this paper, we propose a parallelization of an algebraic multigrid algo-
rithm for finite element problems using a version of AMGe based on element agglom-
eration (agAMGe). Specifically, we start with a partitioning of the original domain
into subdomains with a generally unstructured finite element mesh on each subdomain.
The agglomeration based AMGe from [19] is then applied independently in each subdo-
main. Note that even if one starts with a conforming fine grid, independent coarsening
generally leads to non-matching grids on coarser levels. To set up global problems on
each level, we develop a general dual basis mortar approach. Because the agAMGe
algorithm produces abstractelements and faces defined as lists ofnodes, the mortar mul-
tiplier spaces need to be constructed in a purely algebraic way. We propose an algebraic
extension of the local (element-based) construction used for the construction of the
dual finite element mortar multiplier basis for three dimensional problems described in
[20, 4]. Finally, a multigrid-preconditioned solver is applied to the resulting sequence of
(non-nested) spaces. Numerical results illustrating the computational behavior of the
new algebraic multigrid algorithm are presented.

1. Introduction

In this paper, we consider the problem of developing algebraic multigrid algorithms in
a parallel computing environment. Let the computational domain Ω ⊂ Rd, d ∈ {2, 3}
be the union of polyhedral subdomains, Ω̄ = ∪p

i=1Ω̄i. We assume that we are given
an unstructured mesh on each subdomain Ωi. This means that the meshes need not
result from a geometric refinement strategy. Moreover, the meshes need not align across
subdomain boundaries as long as the mesh on each subdomain aligns with the boundary
of the interfaces between subdomains. By an interface we mean the boundary shared
between two subdomains having positive measure in Rd−1.

We consider finite element approximation of second order elliptic problem (positive
definite and symmetric) in two or three dimensions using the above meshes and a dual
basis mortar approach. Of course, our method still applies to the case when the global
finite element mesh conforms across the subdomain interfaces, in which case, the mortar
method need not be used on the finest level.

The mortar finite element method was introduced by Bernardi, et al. in [8, 9]. The
theory was later developed in [5, 6]. It is a nonconforming domain decomposition tech-
nique which is attractive because it is suitable for parallel implementation and allows
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for independent meshing of the different parts of a complicated domain. The essential
ingredient of this method is the construction of a discrete space on each interface called
the space of mortar multipliers. The finite element solution is sought in a space of func-
tions having jumps across the interfaces orthogonal to the multiplier spaces. This “weak
continuity” condition is enough to obtain a uniquely solvable problem with solution as
accurate as in the usual finite element method. For example, in [20], the following error
estimate was obtained:

p∑

i=1

‖u − uh‖
2
1,Ωi

≤ C

p∑

i=1

h2
i ‖u‖

2
2,Ωi

,

where u is the exact solution, uh is the approximate solution and hi denotes the maximum
diameter of the elements (tetrahedra in this case) in Ωi. The above estimate is valid under
some abstract conditions on the multiplier spaces. In particular, it is required that each
multiplier space contains the constant functions and that the dimension of the space is
equal to the number of interior degrees of freedom on one, fixed, side of the interface.

A natural idea for constructing a multiplier space with local basis functions is to start
with the dual basis for the traces of finite element functions (from one side of the interface)
on each face on the interface. Then, for each interior node one can define a multiplier
basis function by taking linear combinations of the dual basis functions on each face.
It is proven in [20] that such a “dual basis” approach leads to a stable and optimally
convergent approximation.

The goal of this paper is to generalize the above construction in the algebraic case.
This means that we use an algebraic procedure to coarsen (in parallel) each subdomain
independently and extend the dual basis technique to the coarser levels.

The standard algebraic multigrid algorithm was introduced to obtain a solver for prob-
lems posed on large unstructured grids with efficiency comparable to that of multilevel
methods for the geometrically refined case [23, 24]. Recently, a large number of papers
have been published on algebraic multigrid methods that use additional information such
as the element stiffness matrices to construct more robust algorithms. For example, the
algebraic multigrid for finite element problems (AMGe) and its spectral version (spectral
AMGe) are described in [12, 19] and [13], respectively. We will only consider agAMGe
for coarsening on the subdomains in our work [19]. This is because agAMGe preserves
certain topological properties which are necessary for our generalized mortar technique.
We note that our construction carries over to the case of element agglomeration spectral
AMGe without any difficulty.

In the agAMGe discussion, we will closely follow the definitions and setting from
[25]. For the most part, the exposition is algebraic even though, with agAMGe, the
notion of elements is preserved on the coarser “grids”. Specifically, one defines coarser
elements as the union of finer elements mimicking the geometric refinement situation.
Other topological properties such as element faces, domain boundaries, and nodes also
generalized to the coarser levels. This is important as the restrictions of elements to the
interface (the union of faces) is a critical ingredient in the algebraic mortar method which
we propose here.

Roughly speaking, coarse elements in agAMGe are an agglomeration (union) of fine
grid elements. Their degrees of freedom (nodes) are algebraically defined and associated
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with a subset of the fine degrees of freedom through an interpolation matrix P . The
details of specific agAMGe constructions of P can be found in the references given above.

We will get global problems on the coarser “grids” by extending the dual basis multi-
plier approach to the present algebraic setting. Using these global coarser grid problems
in combination with the multigrid strategy leads to a new parallelizable algebraic multi-
grid algorithm. Because of the way that the spaces are glued together at the boundary,
the coarser grid problems are not nested and so the resulting multigrid algorithm is not
variational. For the analysis of non-variational multigrid algorithms, see [10, 11].

In constructing the ingredients of the multigrid algorithm, i.e., the interpolation and
smoothing operators, we will mimic the geometric case in which the grids are obtained by
uniform refinement. We will follow [17] where a variable V-cycle preconditioner resulting
in a uniformly preconditioned algebraic system was presented.

There are other approaches for developing parallel algebraic multigrid algorithms. For
example, in [14, 18] a specially designed coarsening procedure was used that resulted
in a globally conforming mesh. The advantage of our approach is that we can use any
serial coarsening procedure, in particular, an element-based one such as agAMGe (which
produces a better interpolation operator).

The remainder of the paper is outlined as follows. In §2, we set up the model problem
and its discretization. The element agglomeration-based algebraic multilevel coarsening
is summarized in §3. In §4, we extend the dual basis approach to the “generalized”
finite elements generated by independent algebraic coarsening on the subdomains. In
particular, we show that this construction results in dual basis functions that reproduce
constants locally. This is a fundamental ingredient in the analysis of standard mortar
methods and seems important to incorporate into the algebraic setting. The parallel
agAMGe algorithm is described in §5. Finally, in §6 we present numerical results that
demonstrate the performance of the proposed multigrid algorithm.

2. The model problem and finite element approximation

In this section, we briefly review the dual basis mortar approach. We assume that we
are given a generally unstructured finite element mesh T0, e.g., a tetrahedral partitioning
of Ωi. The mesh is assumed to cover each subdomain Ωi exactly but across the subdomain
interfaces the mesh may be non-matching. We only consider interfaces of positive measure
in Rd−1 denoted by Γij ≡ ∂Ωi ∩ ∂Ωj. We assume that the mesh conforms with the
interfaces, i.e., the boundary of each interface Γij aligns with the meshes of both Ωi and
Ωj.

As a model problem, we consider the Dirichlet problem on a bounded polyhedral
domain Ω in Rd. Given f ∈ L2(Ω), we want to approximate the solution u ∈ H1

0 (Ω) of

(2.1)
−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω.

Here a(x) is a positive function which is bounded above and bounded away from zero.
Extensions to more general second order elliptic partial differential equations, systems
and to more general boundary conditions are possible and demonstrated in [1, 6]. The
mortar method can be applied to a variety of other problems (see [2, 7, 21, 26]).
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For simplicity, we consider the case of a piecewise linear approximation space S̄h which
is defined by taking the direct sum of the conforming piecewise linear functions with
respect to T0 on the subdomains vanishing on ∂Ω. Thus, even if the meshes happen to
align across the interfaces, the functions in S̄h are, in general, not continuous there.

First, on each interface, we assign a “mortar” side in some arbitrary fashion. The mesh
on the opposite or non-mortar side is used to define the mortar or Lagrange multiplier
spaces Mij . Their construction is given explicitly below. One can then consider the
mortar finite element method as a discontinuous Galerkin method by defining the space
Sh to be the functions φ ∈ S̄h satisfying

(2.2)

∫

Γij

[φ] θ ds = 0, for all θ ∈ Mij

for all interfaces Γij. Here [·] denotes the jump across Γij. Note that (2.2) imposes a
weak continuity condition on the functions in Sh. The mortar approximation to (2.1) is
then the unique function uh in Sh satisfying

Ah(uh, φ) = (f, φ) for all φ ∈ Sh.

Here

Ah(v, w) ≡
∑

i

∫

Ωi

a∇v · ∇w dx

and

(v, w) =

∫

Ω

vw dx.

The dual basis mortar formulation defines Mij to be a subspace of discontinuous piece-
wise linear functions on Γij (with respect to the non-mortar mesh) which are generated
by a dual basis, {χl}, l = 1, . . . , Nij satisfying

(2.3)

∫

Γij

θlχk ds =

{
1 if l = k,

0 otherwise.

Here {θl}, l = 1, . . . , Nij is the usual nodal finite element basis for the space of functions
M0

ij which are piecewise linear (with respect to the non-mortar mesh) and vanish on
∂Γij. The definition of the dual basis functions will be given in detail in a more general
algebraic setting in §4. This construction will only require the use of the local mass
matrices and local geometric information such as relations between nodes, edges and
triangles and whether the node and the face is on the boundary of the interface.

After the mortar spaces are defined, one imposes conditions (2.2). This relation forces
the interior nodes on the non-mortar interface to be slaves of those on the boundary
and those on the mortar side. This is illustrated in Figure 1. In fact, (2.3) implies that
the nodal value of a function v ∈ Sh on the interior node xl (corresponding to the basis
function θl) is given by

(2.4) cl =

∫

Γij

vm(x)χl dx −

∫

Γij

vnm,0(x)χl dx

where vm(x) denotes the trace of v to Γij from the mortar subdomain and vnm,0 denotes
v on the non-mortar side cut down to zero on the interior nodes. The computation of the
right hand side above requires information about how the elements on the subdomain
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Figure 1. Mortar interface and degrees of freedom

are connected to those on the boundary as well as the geometric relation between the
triangles (faces) on the mortar and those on the non-mortar side and an “interaction
mass matrix”

(2.5) Mikjm =

∫

τi∩τ̃j

θk
i θ̃

m
j dx , k, m = 1, 2, 3.

Here τi and τ̃j are triangles on Γij restricted from the meshes on the mortar and non-

mortar side respectively and θk
i and θ̃m

j run over the nodal basis functions (linear) on τi

and τ̃j.

3. The agAMGe coarsening procedure

In this section, we summarize the main assumptions and definitions needed to con-
struct agglomeration-based AMGe for each subdomain mesh. The agAMGe coarsening
procedure produces the coarser local level meshes, {Tk}

n
k=1, based on abstractly defined

elements and faces and element-based interpolation rules.
An element e is a list of degrees of freedom (nodes). The set of elements provides

overlapping partition of the fine grid nodes. This information can be represented as the
relation table “element node” (see the remark below). A face is a subset of nodes of an
element. Similarly, we assume that the relation “element face” is given on the fine grid.
Each face is associated with at most two elements. If a face is associated with exactly
two elements, we call these elements neighboring elements. If a face is associated with
exactly one element, we call this element a boundary element.

The relation table “element face” consists of a list of face numbers for each element. Its
transpose, “face element” has at most two entries for each face.

Remark 3.1. A relation table can be implemented as the integer part of a sparse ma-
trix, e.g., using the popular csr (compressed sparse row) format. Note, that such an
implementation allows for matrix operations such as taking transpose and multiplication
of relation tables (as rectangular sparse matrices, cf. [25]).
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Next, we consider the agglomeration AMGe algorithm, an algorithm that takes fine
elements and faces and produces coarse elements and their faces. Each coarse element
E is defined as a list (or union) of fine elements. In practice, an agglomerated element
is a list of connected elements, i.e., the resulting union of fine grid elements represents a
subset connected through their faces.

The coarse faces will be unions of fine faces. They are defined as follows:

(1) The coarse face associated with two coarse elements E1 and E2 is given by the
union of all fine faces shared by any pair of fine elements e1 ∈ E1 and e2 ∈ E2.

(2) The coarse face associated with a boundary element E is given by the union of
all fine faces corresponding to fine boundary elements e ∈ E.

The agAMGe coarsening algorithm produces the relation tables “coarse element fine

element”, “coarse element coarse face” and “coarse element coarse node,” extending the notions
of elements, faces and nodes to the coarser grids. From these one can, for example, build
the relation table “coarse face coarse node”.

The relation between coarse basis functions and fine basis functions is defined through
a sparse “prolongation” matrix P that interpolates values at the fine nodes from those
at the coarse. This matrix has the structure “fine node coarse node”. Its transpose P t

defines the coarse grid nodal functions in terms of the fine. Specifically, the i’th coarse
grid nodal function is given by

θc
i =

∑

j

P t
ijθ

f
j

where {θf
j } denotes the set of fine grid basis functions. The above sum is taken over

integers j in the row of matrix “coarse node fine node” associated with the coarse node
index i. In our application, the coarsening procedure will be applied independently on the
subdomains and so the global matrix P will be a block diagonal matrix, one (rectangular)
block for each subdomain.

We assume that P satisfies the following:

(1) When restricted to a coarse grid face, P has full column rank.
(2) P has row-sum 1;

These requirements are met in the case of agAMGe applied to second order elliptic
problems of the form (2.1).

So that the interpolation procedure extends to the faces on the interfaces, some com-
patibility constraints on the choice of the coarse nodes need to be imposed. Specifically,
we shall assume:

Property 3.1. Fine nodes on a coarse face are interpolated only from coarse nodes on
that face.

The coarsening procedures in [19] satisfy these properties. The actual entries of the
interpolation matrix P are obtained by a certain energy minimization principle.

For a given subdomain, consider the finite element method based on its local fine-grid
mesh T0 as discussed in the previous section. On each element e we have a set of nodal
basis functions corresponding to the degrees of freedom of e. We assume that we are given
the local stiffness matrix Ae. The global matrix A (on each subdomain) is assembled in
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the usual way,

wT Av =
∑

e

wT
e Aeve.

Here, ve = v|e denotes the restriction of v to the nodes of e.
The coarse stiffness matrix Ac

E for each coarse element E is defined by assembling the
local stiffness matrices Ae of its fine elements e ⊂ E:

(3.1) Ac
E =

∑

e∈E

(Re)
T AeRe .

Here, Re has the rows of P corresponding to nodes of e.

4. Algebraic construction of mortar spaces

In this section, we present the algebraic element based construction of the mortar
multiplier spaces. This generalizes the dual basis approach from [20, 4] to the case of
meshes which are generated using independent agAMGe coarsening on subdomains.

Note that on the finest level, an interface Γij is the union of faces from the mortar or
the non-mortar side. As noted in §3, this notion is preserved on the coarser grids. The
agAMGe algorithm respects these faces, i.e., Property 3.1 holds for them. Therefore,
the agglomeration can be considered locally on each interface. As a consequence, the
subdomain interpolation matrices induce interface interpolation matrices. Thus, we can
define finite element spaces on both sides of the interface by taking the trace of the
corresponding subdomain finite element spaces. Moreover, the nested subdomain finite
element spaces induce nested spaces on each side of each interface.

A node on Γij is called boundary if it also belongs to another interface. The nodes
on Γij that are not boundary are called interior (to the interface). A face on Γij is
called interior if it does not contain any boundary nodes, it is called a boundary face if
it contains interior and boundary nodes, and finally, it is called a corner face if it does
not contain any interior nodes. This is illustrated in Figure 2.
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Figure 2. Different types of faces on a non-mortar interface
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For the purpose of constructing mortar spaces on the subdomain interfaces, one needs
the relations “mortar interface face” and “non-mortar interface face” on all levels. It is suffi-
cient to construct the relation “coarse face fine face”. Then the required coarse relations
are obtained in terms of, e.g., the product

“mortar interface coarse face” = “mortar interface fine face” × “fine face coarse face”.
Similarly, other relations between objects on both sides of a subdomain interface can be
created on all levels.

With the above structure, we can now define the generalized mortar method. We
will consider a fixed interface Γij and the mesh structure corresponding to a fixed but
arbitrary level of coarsening. We need to develop the analogies of Mij and M 0

ij (see §2).

The space M 0
ij is defined to be the set of functions on the non-mortar mesh on Γij which

vanish on the boundary nodes of Γij. Let T be a non-mortar face of Γij and define Mij(T )
to be the restriction of the non-mortar functions to T . This is a space of dimension equal
to the number of nodes in the corresponding row of “non-mortar face non-mortar node”.
The resulting mass matrix on the coarser levels can be assembled from that on the finer

using the “fine face coarse face” on the non-mortar subdomain. We define M̃ij = ⊕Mij(T )
where the sum is taken over all faces of the non-mortar mesh on Γij. The space Mij will

be a subset of M̃ij .
The dual basis functions in the finite element case (the finest grid in our application)

have two important properties:

(1) The dual basis functions are constructed locally.
(2) The dual basis functions can reproduce constants locally.

These properties are fundamental in the analysis of the mortar method on the finer level
and we will reproduce them on the coarser levels.

On the fine grid, the constant function with value one is obtained in a neighborhood
by setting the coefficients of the nearby nodes in the finite element expansion all equal to
one. That this also holds on the coarser levels is a consequence of the row-sum condition
and Property 3.1.

There is a unique function µ̂l ∈ Mij(T ) satisfying

(µ̂l, θk)T = δlk =

{
1, l = k,

0, l 6= k.

Here {θk} are the basis functions for Mij(T ) (these basis functions are restrictions of
the basis functions of the non-mortar subdomain to T , a consequence of P having full
column rank). In fact,

µ̂l =
∑

k

clkθk

where the coefficients cl = (cl,k) solve the system

M̄T cl = el = (δlk).

Here M̄T denotes the local mass matrix for the element T . This system has a unique
solution because M̄T is invertible.

Using the biorthogonality property (µ̂l, θk)T = δlk, it follows that

αl ≡ α
(T )
l = (1, θl)T
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satisfies ∑

l

αlµ̂l = 1 on T.

The mortar multiplier basis functions {µl} are defined only for nodes xl that are interior
to Γij. We first assign corner faces T to nearby interior vertices, e.g., T is assigned to the
nearest interior vertex. For each interior node xl and face T we define µl on T as follows:

(1) If T is a corner face assigned to xl then µl = 1 on T .
(2) If T is a face which does not contain xl (excluding the case of (1) above) then

µl = 0 on T .
(3) If T is a boundary face containing xl then

µl = αlµ̂l + m−1
∑

k: xk∈∂Γ∩T

αkµ̂k on T

where m is the number of interior nodes in T .
(4) If T is an interior face containing xl then µl = αlµ̂l on T .

We then have
1 =

∑
µl on T

where the sum is taken over l such that µl 6= 0 on T .
The space of mortar multipliers Mij is defined to be the span of {µl}. Note that the

dimension of Mij equals the number of interior nodes xl on Γ and it is easy to see that
∫

Γij

µlθk ds = δlk

∫

Γij

µlθl ds.

The dual basis functions {χl} satisfying (2.3) are obtained from {µl} by the obvious
scaling.

Note that, in general, {µl} are discontinuous across the element boundaries. Two
examples with piecewise linear finite elements and a non-mortar interface with uniform
triangulation in one and two dimensions are presented in Figures 3 and 4.

o µi

ox x i

µn

x

µ

n

1

1

-1

2

0

Figure 3. Mortar basis functions for one-dimensional non-mortar inter-
face discretized with a uniform grid

Note that the construction here is quite general in that it extends to any element
defined interface functions as long as the element mass matrices are available. Thus,
it extends to the types of interface functions resulting from our agAMGe coarsening
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Figure 4. Mortar basis functions for two-dimensional non-mortar inter-
face discretized with a uniform grid

procedure. It also extends to other finite element discretizations such as those using
non-polynomial basis functions or non-conforming ones, such as the Crouzeix–Raviart,
etc.

Since the dual basis for Mij and the basis for M 0
ij are related by (2.3), the values of the

slave nodes on the interior of the non-mortar interface are given by (2.4) on any mesh
level. The implementation of this requires the corresponding interaction matrix (2.5).
Note that since on both sides of the interface, the coarser elements on the face are made
up of finer elements, the coarser interaction matrix can be computed from the finer and
the relations “interface coarse face interface fine face” from the mortar and non-mortar sides.

5. Parallel AMGe

In this section, we describe the parallel multigrid algorithm based on local subdomain
agAMGe coarsening. The implementation of this algorithm involves the following steps:

(1) Each subdomain is assigned to a processor which keeps its initial mesh and local
element matrices. Each interface is assigned to a processor.

(2) A fixed number of agAMGe-coarsening steps are performed in parallel on each
processor.

(3) The algebraic mortar spaces are constructed by the processors responsible for the
interfaces.

(4) The global matrix (reflecting the mortar constraints) is constructed using some
parallel matrix storage structure on each grid level.

The above steps require significant communication between processors. For example,
the processor responsible for an interface must gather coarsening data from both the
mortar and non-mortar subdomains (processors) at every coarsening step. Naturally, one
would assign an interface to one of the processors associated with one of the subdomains
so interprocessor communication would be required between only the two processors
sharing the interface. Specifically, the processor on the interface constructs the local
part of the matrix P which implements the weak continuity condition (2.2). Locally, P

relates the non-mortar boundary nodes and the mortar interface nodes to the interior
non-mortar boundary nodes (slaves).
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Mesh Generator

↓
Problem Generator

↓
hypre → Algebraic Solver ← AMGe

↓
Visualization

Figure 5. Software framework

For the multigrid interpolation, we follow [17]. Specifically, given a coarse grid function
(satisfying the coarse grid constraints (2.2)), we interpolate locally on each subdomain.
The resulting function does not satisfy the constraints on the finer grid. We impose these
constraints on each interface by redefining the nodal values on the interior nodes on the
non-mortar side (slaves) using the formula (2.4). This redefinition requires communica-
tion between the pair of processors representing the subdomains sharing the interface.

For the multigrid algorithm, we can use any standard smoother, e.g., those based on
Gauss-Seidel or Jacobi iteration. On the coarsest grid, we solve the problem exactly by
conjugate gradient iteration to machine tolerance.

6. Numerical experiments

In this section, we discuss complexity issues, the behavior of the agAMGe coarsening
and report the convergence behavior of the preconditioned algorithm using our mortar-
based parallel AMGe algorithm.

The algorithm was implemented in a general, object-oriented MPI [22] code that uses
parts of the HYPRE [15] preconditioning library. Specifically, the program constructs the
stiffness matrix A and the mortar interpolation matrix P for each level and stores them in
parallel (using the par csr format in HYPRE). The global matrix for the mortar method
is P tAP and is computed using a parallel triple matrix product (“RAP”) procedure from
HYPRE. The availability of the entries of this matrix allows the use of Gauss-Seidel
smoothing. Specifically, we use Gauss-Seidel with processors coloring [3]. This is a
convenient choice since, in contrast to Jacobi smoothing, its implementation does not
require estimation of eigenvalues of the global matrix.

In our software framework, the geometric information provided by a mesh generator
is converted to algebraic information (i.e. relation tables, local mass matrices and local
stiffness matrices) by a problem generator. This, in turn, is read by a solver which is
independent of the coordinates, the dimension, and the type of finite element basis func-
tions used. Problem generators for model two-dimensional and general three-dimensional
problems were implemented. These run in parallel refining independently in each subdo-
main. They allow for general geometry including non-matching fine grids in three spatial
dimensions. This software framework is illustrated in Figure 5.

A number of tests were performed to investigate the properties of the method. The
general observation is that the method is reasonably scalable when the number of proces-
sors is increased and the size of the problem in each processor is kept constant. The setup
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cost, as with many other algebraic multigrid approaches, is high but remains bounded as
the number of processors increase. The solution time also scales well if we ignore the time
for the exact solve on the coarsest level of the multigrid. The latter starts to dominate
when large number of processors are used. Efficiently dealing with the coarse solve is a
topic for future research.

We consider the problem (2.1), where f ≡ 1, Ω is the unit square and a is described
below. In this test, we increase the number of processors while keeping the size of the
problem on each processor the same (64x64).

We used the preconditioned conjugate gradient algorithm with the mortar-based par-
allel multigrid algorithm as a preconditioner. The stopping criterion was the reduction
of the residual in the preconditioner norm by 6 orders of magnitude. All tests were run
on ASCI Blue Pacific in LLNL.

Below we show the behavior of agAMGe coarsening in one interior subdomain.

• level 0: 4225 nodes, 8192 elements, 12416 faces
• level 1: 1089 nodes, 2049 elements, 3107 faces
• level 2: 306 nodes, 519 elements, 809 faces
• level 3: 92 nodes, 135 elements, 221 faces
• level 4: 32 nodes, 37 elements, 66 faces

The agAMGe coarsening takes around 4 seconds. Note that the agglomeration is different
in the subdomains that are not interior. This is due to the fact that in the present
implementation we have not introduced element faces on the Dirichlet boundary and the
agglomeration algorithm we used depends on the element faces. A set of meshes obtained
by independent (parallel) subdomain element agglomeration is illustrated in Figure 6 –
Figure 7.

Figure 6. Independent element agglomeration of a 9× 9 subdomain par-
titioned grid; 2nd and 3rd coarsening levels.

A standard measure for the quality of the coarsening is the so called operator com-
plexity which is defined as the ratio of the sum of the number of nonzero entries on all
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Figure 7. Independent element agglomeration of a 9× 9 subdomain par-
titioned grid; 4th and 5th coarsening levels.

p opc nnz0 nnz1 nnz2 nnz3 nnz4

4 1.38 117574 30426 8774 3624 1413

16 1.39 473006 125766 38638 15302 6409

36 1.40 1066302 286106 89342 34678 14535

64 1.40 1897462 511446 160886 61742 25797

100 1.40 2966486 801786 253270 96494 40195

144 1.40 4273374 1157126 366494 138934 57729

196 1.40 5818126 1577466 500558 189062 78399

256 1.40 7600742 2062806 655462 246878 102205

324 1.40 9621222 2613146 831206 312382 129147

400 1.40 11879566 3228486 1027790 385574 159225

484 1.40 14375774 3908826 1245214 466454 192439

576 1.40 17109846 4654166 1483478 555022 228789

Table 1. Number of processors (p), operator complexity (opc), number
of non-zeros per level

levels to the number of nonzero entries on the finest level. Because the coarsening does
not change in our case, the operator complexity on a given subdomain is constant. This,
together with the number of non-zeros entries in the matrix per level is shown in Table
1.

We next examine the setup time (excluding the problem generation time). This consists
of the total time for the “RAP” procedures and the time for the construction of the mortar
interpolation data structures. Some of these times are reported in Figure 8. Note that
the total initialization time less the time to read from files has a constant shift with
respect to the total “RAP” time. This shift includes the time used in the construction of
the mortar interpolation data structures and shows that this part of the setup is scalable.
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Figure 8. Setup times

Next, we look at the convergence behavior and solution times. We start with a smooth
coefficient problem (2.1) where a(x, y) = 1 + x2 + y2. In Table 2, we report the number
of unknowns, the asymptotic convergence factor, an estimate for the condition number
and the number of iterations corresponding to a v-cycle multigrid preconditioner with
one pre and post smoothing. The estimate for the condition number was produced from
parameters in the conjugate gradient iteration based on a Lanczos procedure [16]. All
these quantities clearly indicate convergence which is uniform in the number of processors.

p N ρ κ nit

4 16900 0.066 1.40 6

16 67600 0.071 1.42 6

36 152100 0.070 1.41 6

64 270400 0.070 1.41 6

100 422500 0.070 1.41 6

144 608400 0.070 1.41 6

196 828100 0.070 1.42 6

256 1081600 0.070 1.42 6

324 1368900 0.070 1.42 6

400 1690000 0.070 1.42 6

484 2044900 0.070 1.42 6

576 2433600 0.070 1.42 6

676 2856100 0.070 1.42 6

Table 2. Number of processors (p), total number of unknowns (N), as-
ymptotic convergence factor (ρ), (estimate for) the condition number (κ),
number of iterations (nit).

Next, in Table 3, we show the time for solution on the coarse grid (c) and the remainder
of the time spent in solution procedure (r). This information is repeated for three different
choices of the preconditioner, the standard V-cycle (1), the variable V-cycle (2) and a
standard V-cycle where the coarse grid solve is preconditioned with the Gauss-Seidel
smoother (3). One can see that the coarse solve dominates the solution phase. This is
a typical behavior of all domain decomposition based methods. Note that the use of a
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crude preconditioner on the coarsest grid results in considerably better performance but
the coarse grid solve still dominates the solution time.

p c1 r1 c2 r2 c3 r3

4 0.18 0.76 0.69 1.24 0.21 0.77

16 2.85 1.34 1.24 1.52 1.37 0.94

36 3.30 1.13 2.77 1.87 3.24 1.18

64 6.80 1.32 6.00 3.02 4.73 1.50

100 12.9 2.66 9.95 4.95 7.26 1.54

144 25.8 2.63 18.8 4.63 10.6 1.97

196 29.9 2.77 27.0 4.85 19.9 3.68

256 49.3 2.50 62.4 9.06 26.6 2.80

324 88.6 3.50 90.2 9.80 54.1 3.63

400 158. 4.60 138. 11.2 84.6 8.62

484 180. 8.20 160. 15.0 98.2 6.76

576 297. 7.90 272. 18.4 148. 8.00

676 457 13.2 417. 26.2 235. 13.1

Table 3. Coarse solve time (c), total solve time minus coarse solve time (r).

Next, we consider a second test problem where a in (2.1) is discontinuous. Specifically,
a ≡ 1 in [0, 1

2
]2 ∪ [1

2
, 1]2 and a ≡ 10−2 in the rest of the domain. Again, we use the

v-cycle multigrid preconditioner with one pre and post smoothing. The convergence is
demonstrated in Table 4. Although more iterations are required than in the first problem,
the number of iterations ultimately stabilize.

p N ρ κ nit

4 16900 0.165 2.37 8

16 67600 0.461 30.6 14

36 152100 0.575 91.2 18

64 270400 0.615 84.7 23

100 422500 0.623 91.6 23

144 608400 0.641 78.2 24

196 828100 0.645 91.6 24

256 1081600 0.667 77.1 24

324 1368900 0.689 91.3 24

400 1690000 0.677 97.8 26

484 2044900 0.659 87.8 23

576 2433600 0.642 72.7 24

676 2856100 0.673 87.3 24

Table 4. Number of processors (p), total number of unknowns (N), as-
ymptotic convergence factor (ρ), (estimate for) the condition number (κ),
number of iterations (nit).

Finally, in Table 5, we give the solution times. We use the same notation as in Table
3. The times are larger than before since they correspond to roughly four times as many
iterations. Once again, the solution time is dominated by the coarse grid solve.

The above results demonstrate that for these model problems, the non-nested mortar
based multigrid preconditioner leads to a processor independent rate of convergence when
the number of coarse grid levels remain the same. The total cost is dominated by the
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p c1 r1 c2 r2 c3 r3

4 0.60 0.98 0.56 1.21 0.35 1.02

16 15.2 2.40 10.8 3.03 4.05 2.09

36 50.0 4.03 42.6 6.59 12.6 3.18

64 110. 5.74 80.0 7.51 24.9 6.18

100 140. 6.27 121. 12.7 34.5 9.22

144 231. 8.26 180. 15.2 50.0 8.54

196 374. 12.9 278. 19.6 84.8 12.9

256 411. 14.9 393. 27.4 118. 11.3

324 579. 16.2 543. 41.0 215. 17.9

400 991. 28.9 828 46.5 365. 21.7

484 1084 25.7 1017 53.5 461. 28.5

576 1416 33.2 1394 85.6 827. 26.5

Table 5. Coarse solve time (c), total solve time minus coarse solve time (r).

coarse grid solve for a large number of processors. Setup costs are dominated by the
input phase while the costs for mortar interpolation and “RAP” are similar to the time
spent in the solution phase excluding the coarse grid solve.
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[23] J. W. Ruge and K. Stüben. Efficent solutions of finite difference and finite element equations by

algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid methods, volume 3 of Frontiers
in applied mathematics, pages 73–130. SIAM, Philadelphia, 1987.
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